Robust Model Selection in Linear regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Minimum Description Length for Robust Linear Regression Model Selection

A minimum description length (MDL) and stochastic complexity approach for model selection in robust linear regression is studied in this paper. Computational aspects and implementation of this approach to practical problems are the focuses of the study. Particularly, we provide both algorithms and a package of S language programs for computing the stochastic complexity and proceeding with the a...

متن کامل

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust Signed-Rank Variable Selection in Linear Regression

The growing need for dealing with big data has made it necessary to find computationally efficient methods for identifying important factors to be considered in statistical modeling. In the linear model, the Lasso is an effective way of selecting variables using penalized regression. It has spawned substantial research in the area of variable selection for models that depend on a linear combina...

متن کامل

Robust Model Selection in Generalized Linear Models

In this paper, we extend to generalized linear models (including logistic and other binary regression models, Poisson regression and gamma regression models) the robust model selection methodology developed by Müller and Welsh (2005) for linear regression models. As in Müller and Welsh (2005), we combine a robust penalized measure of fit to the sample with a robust measure of out of sample pred...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kirkuk University Journal-Scientific Studies

سال: 2007

ISSN: 2616-6801

DOI: 10.32894/kujss.2007.43525